Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 165(3): 303-317, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36547371

RESUMO

Cells possess intrinsic features that are inheritable via epigenetic regulation, such as DNA methylation and histone modification. These inheritable features maintain a unique gene expression pattern, underlying cellular memory. Because of the degradation or displacement of mitotic chromosomes, most transcription factors do not contribute to cellular memory. However, accumulating in vitro evidence indicates that some transcription factors can be retained in mitotic chromosomes called as bookmarking. Such transcription factors may contribute to a novel third mechanism of cellular memory. Since most findings of transcription factor bookmarking have been reported in vitro, little is currently known in vivo. In the neural tube of mouse embryos, we discovered that OLIG2, a basic helix loop helix (bHLH) transcription factor that regulates proliferation of neural progenitors and the cell fate of motoneurons and oligodendrocytes, binds to chromatin through every cell cycle including M-phase. OLIG2 chromosomal localization coincides with mitotic cell features such as the phosphorylation of histone H3, KI67, and nuclear membrane breakdown. Chromosomal localization of OLIG2 is regulated by an N-terminus triple serine motif. Photobleaching analysis revealed slow OLIG2 mobility, suggesting a high affinity of OLIG2 to DNA. In Olig2 N-terminal deletion mutant mice, motoneurons and oligodendrocyte progenitor numbers are reduced in the neural tube, suggesting that the bookmarking regulatory domain is important for OLIG2 function. We conclude that OLIG2 is a de novo in vivo bookmarking transcription factor. Our results demonstrate the presence of in vivo bookmarking in a living organism and illustrate a novel function of transcription factors.


Assuntos
Epigênese Genética , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Tubo Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Oligodendroglia/metabolismo
2.
Acta Histochem Cytochem ; 56(6): 87-94, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38318103

RESUMO

In the pathogenesis of Alzheimer's disease (AD), highly neurotoxic amyloid-ß (Aß) oligomers appear early, they are thus considered to be deeply involved in the onset of Alzheimer's disease. However, Aß oligomer visualization is challenging in human tissues due to their multiple forms (e.g., low- and high-molecular-weight oligomers, including protofibrils) as well as their tendency to rapidly change forms and aggregate. In this review, we present two visualization approaches for Aß oligomers in tissues: an immunohistochemical (using the monoclonal antibody TxCo1 against toxic Aß oligomer conformers) and imaging mass spectrometry using the small chemical Shiga-Y51 that specifically binds Aß oligomers. TxCo1 immunohistochemistry revealed Aß oligomer distributions in postmortem human brains with AD. Using Shiga-Y51, imaging mass spectrometry revealed Aß oligomer distributions in the brain of a transgenic mouse model for AD. These two methods would potentially contribute to elucidating the pathological mechanisms underlying AD.

3.
Dev Growth Differ ; 64(9): 494-500, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308507

RESUMO

Urodele amphibians have exceptional regeneration ability in various organs. Among these, the Iberian ribbed newt (Pleurodeles waltl) has emerged as a useful model organism for investigating the mechanisms underlying regeneration. Neural stem cells (NSCs) are an important source of regeneration in the central nervous system (CNS) and their culture method in vitro has been well established. NSCs form spherical cell aggregates called neurospheres and their formation has been demonstrated in various vertebrates, including some urodele species, but not in P. waltl. In this study, we reported neurosphere formation in brain- and spinal cord-derived cells of post-metamorphic P. waltl. These neurospheres showed proliferative activity and similar expression of marker proteins. However, the surface morphology was found to vary according to their origin, implying that the characteristics of the neurospheres generated from the brain and spinal cord could be similar but not identical. Subsequent in vitro differentiation analysis demonstrated that spinal cord-derived neurospheres gave rise to neurons and glial cells. We also found that cells in neurospheres from P. waltl differentiated to oligodendrocytes, whereas those from axolotls were reported not to differentiate to this cell type under standard culture conditions. Based on our findings, implantation of genetically modified neurospheres together with associated technical advantages in P. waltl could reveal pivotal gene(s) and/or signaling pathway(s) essential for the complete spinal cord regeneration ability in the future.


Assuntos
Células-Tronco Neurais , Pleurodeles , Animais , Pleurodeles/anatomia & histologia , Pleurodeles/metabolismo , Salamandridae , Medula Espinal , Neurônios
4.
Front Cell Neurosci ; 16: 869398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496917

RESUMO

Fragile X syndrome (FXS) is an inherited intellectual disability caused by a deficiency in Fragile X mental retardation 1 (Fmr1) gene expression. Recent studies have proposed the importance of cytoplasmic polyadenylation element-binding protein 1 (CPEB1) in FXS pathology; however, the molecular interaction between Fmr1 mRNA and CPEB1 has not been fully investigated. Here, we revealed that CPEB1 co-localized and interacted with Fmr1 mRNA in hippocampal and cerebellar neurons and culture cells. Furthermore, CPEB1 knockdown upregulated Fmr1 mRNA and protein levels and caused aberrant localization of Fragile X mental retardation protein in neurons. In an FXS cell model, CPEB1 knockdown upregulated the mRNA levels of several mitochondria-related genes and rescued the intracellular heat shock protein family A member 9 distribution. These findings suggest that CPEB1 post-transcriptionally regulated Fmr1 expression through the 3' untranslated region, and that CPEB1 knockdown might affect mitochondrial function.

5.
J Lipid Res ; 63(6): 100210, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439525

RESUMO

Diverse molecular species of sulfatide with differences in FA lengths, unsaturation degrees, and hydroxylation statuses are expressed in the kidneys. However, the physiological functions of specific sulfatide species in the kidneys are unclear. Here, we evaluated the distribution of specific sulfatide species in the kidneys and their physiological functions. Electron microscopic analysis of kidneys of Cst-deficient mice lacking sulfatide showed vacuolar accumulation in the cytoplasm of intercalated cells in the collecting duct, whereas the proximal and distal tubules were unchanged. Immunohistochemical analysis revealed that vacuolar H+-ATPase-positive vesicles were accumulated in intercalated cells in sulfatide-deficient kidneys. Seventeen sulfatide species were detected in the murine kidney by iMScope MALDI-MS analysis. The distribution of the specific sulfatide species was classified into four patterns. Although most sulfatide species were highly expressed in the outer medullary layer, two unique sulfatide species of m/z 896.6 (predicted ceramide structure: t18:0-C22:0h) and m/z 924.6 (predicted ceramide structure: t18:0-C24:0h) were dispersed along the collecting duct, implying expression in intercalated cells. In addition, the intercalated cell-enriched fraction was purified by fluorescence-activated cell sorting using the anti-vacuolar H+-ATPase subunit 6V0A4, which predominantly contained sulfatide species (m/z 896.6 and 924.6). The Degs2 and Fa2h genes, which are responsible for ceramide hydroxylation, were expressed in the purified intercalated cells. These results suggested that sulfatide molecular species with ceramide composed of phytosphingosine (t18:0) and 2-hydroxy FAs, which were characteristically expressed in intercalated cells, were involved in the excretion of NH3 and protons into the urine.


Assuntos
Sulfoglicoesfingolipídeos , ATPases Vacuolares Próton-Translocadoras , Animais , Ceramidas , Rim/metabolismo , Camundongos , Esfingosina/análogos & derivados , ATPases Vacuolares Próton-Translocadoras/metabolismo
6.
FEBS Open Bio ; 12(1): 82-94, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480525

RESUMO

Cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates the translation of numerous mRNAs. We previously showed that AU-rich binding factor 1 (AUF1) regulates Cpeb1 expression through the 3' untranslated region (3'UTR). To investigate the molecular basis of the regulatory potential of the Cpeb1 3'UTR, here we performed reporter analyses that examined expression levels of Gfp reporter mRNA containing the Cpeb1 3'UTR. Our findings indicate that CPEB1 represses the translation of Cpeb1 mRNA and that miR-145a-5p and let-7b-5p are involved in the reduction in Cpeb1 expression in the absence of AUF1. These results suggest that Cpeb1 expression is post-transcriptionally regulated by AUF1, CPEB1, and microRNAs.


Assuntos
MicroRNAs , Regiões 3' não Traduzidas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Cell Tissue Res ; 386(3): 477-490, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34562148

RESUMO

Lamellar corpuscles function as mechanoreceptors in the skin, composed of axon terminals and lamellae constructed by terminal Schwann cells. They are classified into Pacinian, Meissner, and simple corpuscles based on histological criteria. Lamellar corpuscles in rat dermal papilla cells have been reported; however, the morphological aspects have yet to be thoroughly investigated. In the present study, we analyzed the enzyme activity, distribution, fine structure, and three-dimensional innervation of lamellar corpuscles in rat plantar skin. The lamellar corpuscles exhibiting non-specific cholinesterase were densely distributed in rat footpads, evident as notable skin elevations, especially at the apex, the highest portion of the ridges in each footpad. In contrast, only a few lamellar corpuscles were found in other plantar skin areas. Lamellar corpuscle was considered composed of a flat axon terminal Schwann cell lamellae, which were roughly concentrically arranged in the dermal papilla. These histological characteristics correspond to those of the simple corpuscle. Moreover, the axon tracing method revealed that one trunk axon innervated several simple corpuscles. The territory of the trunk axons overlapped with each other. Finally, the animals' footprints were analyzed. During the pausing and walking phases, footpads are often in contact with the floor. These results demonstrate that the type of lamellar corpuscles in the dermal papillae of rat plantar skin is a simple corpuscle and implies that their distribution pattern in the plantar skin is convenient for efficient sensing and transmission of mechanical stimuli from the ground.


Assuntos
Pé/fisiologia , Células Receptoras Sensoriais/fisiologia , Pele/anatomia & histologia , Pele/inervação , Animais , Ratos , Ratos Wistar
8.
Biomaterials ; 270: 120686, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33540171

RESUMO

The accumulation of ß-amyloid (Aß) aggregates in the brain occurs early in the progression of Alzheimer's disease (AD), and non-fibrillar soluble Aß oligomers are particularly neurotoxic. During binding to Aß fibrils, curcumin, which can exist in an equilibrium state between its keto and enol tautomers, exists predominantly in the enol form, and binding activity of the keto form to Aß fibrils is much weaker. Here we described the strong binding activity the keto form of curcumin derivative Shiga-Y51 shows for Aß oligomers and its scant affinity for Aß fibrils. Furthermore, with imaging mass spectrometry we revealed the blood-brain barrier permeability of Shiga-Y51 and its accumulation in the cerebral cortex and the hippocampus, where Aß oligomers were mainly localized, in a mouse model of AD. The keto form of curcumin derivatives like Shiga-Y51 could be promising seed compounds to develop imaging probes and therapeutic agents targeting Aß oligomers in the brain.


Assuntos
Doença de Alzheimer , Curcumina , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Fragmentos de Peptídeos
9.
Biochem Biophys Res Commun ; 534: 491-497, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33220927

RESUMO

Cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates polyadenylation and subsequent translation of CPE-containing mRNAs involved in various physiological and pathological phenomena. Although the significance of CPEB1-mediated translational regulation has recently been reported, the detailed regulatory mechanism of Cpeb1 expression remains unclear. To elucidate the post-transcriptional regulatory mechanisms of Cpeb1 expression, we constructed reporter plasmids containing various deletions or mutations in the Cpeb1 mRNA 3' untranslated region (3'UTR). We investigated their expression levels in Neuro2a neuroblastoma cells. We found that Cpeb1 expression is regulated through an AU-rich element in its 3'UTR. Furthermore, the mRNA decay factor AU-rich binding factor 1 (AUF1) regulates Cpeb1 expression, and knockdown of AUF1 upregulates Cpeb1 mRNA expression but results in a decrease in CPEB1 protein levels. These findings indicate that AUF1 has a discordant role in the expression of Cpeb1.


Assuntos
Ribonucleoproteína Nuclear Heterogênea D0/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estabilidade de RNA
10.
Histochem Cell Biol ; 153(5): 323-338, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32086573

RESUMO

Scaffold attachment factor (SAFB) 1 and its homologue SAFB2 are multifunctional proteins that are involved in various cellular mechanisms, including chromatin organization and transcriptional regulation, and are also corepressors of estrogen receptor alpha (ERα). Both SAFBs are expressed at high levels in the brain. However, the distributions of SAFB1 and SAFB2 have yet to be characterized in detail and it is unclear whether both proteins interact with ERα in the brain. In this study, we investigated the expression and distribution of both SAFBs and their interaction with ERα in adult male rat brain. Immunohistochemical staining showed that SAFB1 and SAFB2 have a similar distribution pattern and are widely expressed throughout the brain. Double-fluorescence immunohistochemical and immunocytochemical analyses in primary cultures showed that the two SAFB proteins are localized in nuclei of neurons, astrocytes, and oligodendrocytes. Of note, SAFB2 was also found in cytoplasmic regions in these cell lineages. Both SAFB proteins were also expressed in ERα-positive cells in the medial preoptic area (MPOA) and arcuate and ventromedial hypothalamic nuclei. Co-immunoprecipitation experiments revealed that both SAFB proteins from the MPOA reciprocally interact with endogenous ERα. These results indicate that, in addition to a role in basal cellular function in the brain, the SAFB proteins may serve as ERα corepressors in hormone-sensitive regions.


Assuntos
Encéfalo/metabolismo , Receptor alfa de Estrogênio/química , Proteínas de Ligação à Região de Interação com a Matriz/análise , Proteínas Associadas à Matriz Nuclear/análise , Receptores de Estrogênio/análise , Animais , Células Cultivadas , Receptor alfa de Estrogênio/metabolismo , Feminino , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/deficiência , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas Associadas à Matriz Nuclear/deficiência , Proteínas Associadas à Matriz Nuclear/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Estrogênio/deficiência , Receptores de Estrogênio/metabolismo
11.
J Neurosci Res ; 98(2): 325-337, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31385342

RESUMO

Injured optic nerves induce death in almost all retinal ganglion cells (RGC) and cause a loss of axons. To date, we have studied injured RGC axon regeneration by using a traumatic optic nerve injury (TONI) rodent model, and we revealed that axonal regeneration is induced by the graft of an autologous peripheral nerve. The efficient approach to the regeneration of axons thus needs an environmental adjustment of RGC. However, the RGC environment induced by TONI remains unknown. Here, we analyzed female and male C57BL/6 mouse retinal tissue alterations in detail after TONI and focused on the major phospholipid species that are enriched in the whole retina. Reactive astrocyte accumulation, glia scar formation, and demyelination were observed in the injured optic nerve area, while RGC cell death, astrocyte accumulation, and Glial fibrillary acidic protein (GFAP) positive Müller cell increases were detected in the retinal layer. Furthermore, phosphatidylinositol (PI) 18:0/20:4 was localized to three nuclear layer structures: the ganglion cell layer (GCL), the inner nuclear layer (INL), and the outer nuclear layer (ONL) in control retina; however, the localization of 18:0/20:4 PI in TONI was disturbed. Meanwhile, phosphatidylserine (PS) 18:0/22:6 showed that the expression was specifically in the inner plexiform layer (IPL) with similar signal intensity in both cases. Other PS species and phosphatidylethanolamine (PE) were differentially localized in the retinal layer; however, the expressions of PE including docosahexaenoic acid (DHA) were affected by TONI. These results suggest that not only GCL but also other retinal layers were influenced by TONI.


Assuntos
Traumatismos do Nervo Óptico/metabolismo , Fosfolipídeos/metabolismo , Retina/metabolismo , Animais , Astrócitos/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Regeneração Nervosa/fisiologia , Células Ganglionares da Retina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Int J Mol Med ; 43(5): 2164-2176, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896835

RESUMO

The hypocretin/orexin neuropeptide system coordinates the regulation of various physiological processes. Our previous study reported that a reduction in the expression of pleomorphic adenoma gene­like 1 (Plagl1), which encodes a C2H2 zinc­finger transcription factor, occurs in hypocretin neuron­ablated transgenic mice, suggesting that PLAGL1 is co­expressed in hypocretin neurons and regulates hypocretin transcription. The present study examined whether canonical prepro­hypocretin transcription is functionally modulated by PLAGL1. Double immunostaining indicated that the majority of hypocretin neurons were positive for PLAGL1 immunoreactivity in the nucleus. Notably, PLAGL1 immunoreactivity in hypocretin neurons was altered in response to several conditions affecting hypocretin function. An uneven localization of PLAGL1 was detected in the nuclei of hypocretin neurons following sleep deprivation. Chromatin immunoprecipitation revealed that endogenous PLAGL1 may bind to a putative PLAGL1­binding site in the proximal region of the hypocretin gene, in the murine hypothalamus. In addition, electroporation of the PLAGL1 expression vector into the fetal hypothalamus promoted hypothalamic hypocretin transcription. These results suggested that PLAGL1 may regulate hypothalamic hypocretin transcription.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Orexinas/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Embrião de Mamíferos/citologia , Genes Supressores de Tumor , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Regiões Promotoras Genéticas/genética , Ligação Proteica
13.
J Comp Neurol ; 527(12): 2047-2060, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30779139

RESUMO

In the dorsal root ganglia (DRG), two types of glial cells (Schwann cells and satellite glial cells) have been identified based on cell morphology and expression of specific markers. In the present study, we observed unknown glial cells that were positive for p75 neurotrophin receptor (p75NTR), and therefore were immunohistochemically and ultrastructurally characterized for the first time. These cells exhibited stronger immunoreactivity against an anti-p75NTR antibody than the DRG neurons (hereafter referred to as p75NTR++ cells). Moreover, these cells covered the glial cells surrounding proximal process of the large-diameter DRG neurons. The proximal process is called "dendro-axon." The p75NTR++ cells were predominantly distributed where the first myelinating Schwann cells appear. The p75NTR++ cells were also positive for the pan-glial cell markers S100, nestin, and Sox10, but negative for fibroblast and macrophage markers. Moreover, they were negative for a satellite glial cell marker, inwardly rectifying potassium channel Kir4.1, as well as a nonmyelinating Schwann cell marker, glial fibrillary acidic protein. In addition, their morphological features were distinct from those of the myelinating Schwann cells. To investigate the three-dimensional ultrastructure of the p75NTR++ cells, we used array tomography combined with correlative light and electron microscopic observation. Three-dimensional ultrastructural observation revealed that the p75NTR++ cells loosely covered glial cells around the dendro-axons with highly ramified processes. Glial cells with these morphological features have not been reported before, indicating that the p75NTR++ glial cells are a new glial cell type in the DRG. Our results will give new insights into cell-cell relationships.


Assuntos
Gânglios Espinais/citologia , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/citologia , Receptores de Fatores de Crescimento/metabolismo , Animais , Gânglios Espinais/metabolismo , Masculino , Neuroglia/metabolismo , Ratos , Ratos Wistar
14.
IBRO Rep ; 5: 99-109, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30505974

RESUMO

Lamins are type V intermediate filament proteins that are located beneath the inner nuclear membrane. In mammalian somatic cells, LMNB1 and LMNB2 encode somatic lamins B1 and B2, respectively, and the LMNA gene is alternatively spliced to generate somatic lamins A and C. Mutations in lamin genes have been linked to many human hereditary diseases, including neurodegenerative disorders. Knowledge about lamins in the nervous system has been accumulated recently, but a precise analysis of lamin subtypes in glial cells has not yet been reported. In this study we investigated the composition of lamin subtypes in neurons, astrocytes, oligodendrocyte-lineage cells, and microglia in the adult rat cerebral cortex using an immunohistochemical staining method. Lamin A was not observed in neurons and glial cells. Lamin C was observed in astrocytes, mature oligodendrocytes and neurons, but not observed in oligodendrocyte progenitor cells. Microglia also did not stain positive for lamin C which differed from macrophages, with lamin C positive. Lamin B1 and B2 were observed in all glial cells and neurons. Lamin B1 was intensely positive in oligodendrocyte progenitor cells compared with other glial cells and neurons. Lamin B2 was weakly positive in all glial cells compared to neurons. Our current study might provide useful information to reveal how the onset mechanisms of human neurodegenerative diseases are associated with mutations in genes for nuclear lamin proteins.

15.
Sci Rep ; 8(1): 14542, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30266964

RESUMO

Bilateral adrenalectomy forces the patient to undergo glucocorticoid replacement therapy and bear a lifetime risk of adrenal crisis. Adrenal autotransplantation is considered useful to avoid adrenal crisis and glucocorticoid replacement therapy. However, the basic process of regeneration in adrenal autografts is poorly understood. Here, we investigated the essential regeneration factors in rat adrenocortical autografts, with a focus on the factors involved in adrenal development and steroidogenesis, such as Hh signalling. A remarkable renewal in cell proliferation and increase in Cyp11b1, which encodes 11-beta-hydroxylase, occurred in adrenocortical autografts from 2-3 weeks after autotransplantation. Serum corticosterone and adrenocorticotropic hormone levels were almost recovered to sham level at 4 weeks after autotransplantation. The adrenocortical autografts showed increased Dhh expression at 3 weeks after autotransplantation, but not Shh, which is the only Hh family member to have been reported to be expressed in the adrenal gland. Increased Gli1 expression was also found in the regenerated capsule at 3 weeks after autotransplantation. Dhh and Gli1 might function in concert to regenerate adrenocortical autografts. This is the first report to clearly show Dhh expression and its elevation in the adrenal gland.


Assuntos
Glândulas Suprarrenais/fisiologia , Proteínas Hedgehog/metabolismo , Regeneração , Proteína GLI1 em Dedos de Zinco/metabolismo , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/transplante , Animais , Autoenxertos , Proliferação de Células , Masculino , Ratos , Ratos Wistar , Transdução de Sinais
16.
Neurochem Res ; 43(1): 3-11, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28980095

RESUMO

One of the unsolved problems in the research field of oligodendrocyte (OL) development has been the site(s) of origin of optic nerve OLs and its precursor cells (OPCs). It is generally accepted that OLs in the optic nerve are derived from the brain, and thus optic nerve OLs are immigrant cells. We previously demonstrated the brain origin of optic nerve OPCs in chick embryos. However, the site of optic nerve OPC origin has not been examined experimentally in developing rodents for the past two decades. We have recently reported that optic nerve OPCs in mice arise in the preoptic area by E12.5 and gradually migrate caudally and enter the optic nerve. These OPCs give rise to myelinating OLs in the optic nerve in the postnatal or adult stages. Surprisingly, there are species differences with respect to the origin of optic nerve OPCs between chicks and mice. Here, we summarize the site of OPC origin in the optic nerve based on our own previous and recent results, and discuss possible mechanisms underlying these species differences.


Assuntos
Diferenciação Celular/fisiologia , Oligodendroglia/citologia , Nervo Óptico/citologia , Células-Tronco/citologia , Animais , Humanos , Neurogênese/fisiologia , Vertebrados/metabolismo
17.
J Neurochem ; 140(3): 435-450, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27861899

RESUMO

HSO3-3-galactosylceramide (Sulfatide) species comprise the major glycosphingolipid components of oligodendrocytes and myelin and play functional roles in the regulation of oligodendrocyte maturation and myelin formation. Although various sulfatide species contain different fatty acids, it is unclear how these sulfatide species affect oligodendrogenesis and myelination. The O4 monoclonal antibody reaction with sulfatide has been widely used as a useful marker for oligodendrocytes and myelin. However, sulfatide synthesis during the pro-oligodendroblast stage, where differentiation into the oligodendrocyte lineage has already occurred, has not been examined. Notably, this stage comprises O4-positive cells. In this study, we identified a sulfatide species from the pro-oligodendroblast-to-myelination stage by imaging mass spectrometry. The results demonstrated that short-chain sulfatides with 16 carbon non-hydroxylated fatty acids (C16) and 18 carbon non-hydroxylated fatty acids (C18) or 18 carbon hydroxylated fatty acids (C18-OH) existed in restricted regions of the early embryonic spinal cord, where pro-oligodendroblasts initially appear, and co-localized with Olig2-positive pro-oligodendroblasts. C18 and C18-OH sulfatides also existed in isolated pro-oligodendroblasts. C22-OH sulfatide became predominant later in oligodendrocyte development and the longer C24 sulfatide was predominant in the adult brain. Additionally, the presence of each sulfatide species in a different area of the adult brain was demonstrated by imaging mass spectrometry at an increased lateral resolution. These findings indicated that O4 recognized sulfatides with short-chain fatty acids in pro-oligodendroblasts. Moreover, the fatty acid chain of the sulfatide became longer as the oligodendrocyte matured. Therefore, individual sulfatide species may have unique roles in oligodendrocyte maturation and myelination. Read the Editorial Highlight for this article on page 356.


Assuntos
Encéfalo/crescimento & desenvolvimento , Ácidos Graxos/análise , Oligodendroglia/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Medula Espinal/crescimento & desenvolvimento , Sulfoglicoesfingolipídeos/análise , Animais , Encéfalo/metabolismo , Bovinos , Ácidos Graxos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodendroglia/metabolismo , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Medula Espinal/química , Medula Espinal/metabolismo , Sulfoglicoesfingolipídeos/metabolismo
18.
Biochem Biophys Res Commun ; 464(1): 269-74, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26116536

RESUMO

Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors.


Assuntos
Gânglios Espinais/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oligodendroglia/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Sobrevivência Celular , Gânglios Espinais/citologia , Regulação da Expressão Gênica , Masculino , Proteínas Quinases Ativadas por Mitógeno/genética , Oligodendroglia/citologia , Cultura Primária de Células , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Fatores de Transcrição SOXB1/antagonistas & inibidores , Fatores de Transcrição SOXB1/genética , Transdução de Sinais
19.
Histochem Cell Biol ; 141(3): 301-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24170317

RESUMO

Sex-determining region Y (SRY)-box 2 (Sox2) is a member of the Sox family transcription factors. In the central nervous system, Sox2 is expressed in neural stem cells from neurogenic regions, and regulates stem cell proliferation and differentiation. In the peripheral nervous system, Sox2 is found only in the immature and dedifferentiated Schwann cells, and is involved in myelination inhibition or N-cadherin redistribution. In the present immunohistochemical study, we found that Sox2 is also expressed in other cells of the adult rat peripheral nervous system. Nuclear Sox2 was observed in all satellite glial cells, non-myelinating Schwann cells, and the majority of terminal Schwann cells that form lamellar corpuscles and longitudinal lanceolate endings. Sox2 was not found in myelinating Schwann cells and terminal Schwann cells of subepidermal free nerve endings. Satellite glial cells exhibit strong Sox2 immunoreactivity, whereas non-myelinating Schwann cells show weak immunoreactivity. RT-PCR confirmed the presence of Sox2 mRNA, indicating that the cells are likely Sox2 expressors. Our findings suggest that the role of Sox2 in the peripheral nervous system may be cell-type-dependent.


Assuntos
Neuroglia/metabolismo , Fatores de Transcrição SOXB1/genética , Células de Schwann/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Imuno-Histoquímica , Masculino , Células-Tronco Neurais/metabolismo , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Fatores de Transcrição SOXB1/metabolismo , Distribuição Tecidual
20.
PLoS One ; 8(10): e77710, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24147063

RESUMO

Status epilepticus (SE) induces pathological and morphological changes in the brain. Recently, it has become clear that excessive neuronal excitation, stress and drug abuse induce chromatin remodeling in neurons, thereby altering gene expression. Chromatin remodeling is a key mechanism of epigenetic gene regulation. Histone H3 phosphorylation is frequently used as a marker of chromatin remodeling and is closely related to the upregulation of mRNA transcription. In the present study, we analyzed H3 phosphorylation levels in vivo using immunohistochemistry in the brains of mice with pilocarpine-induced SE. A substantial increase in H3 phosphorylation was detected in neurons in specific brain structures. Increased H3 phosphorylation was dependent on neuronal excitation. In particular, a robust upregulation of H3 phosphorylation was detected in the caudate putamen, and there was a gradient of phosphorylated H3(+) (PH3(+)) neurons along the medio-lateral axis. After unilateral ablation of dopaminergic neurons in the substantia nigra by injection of 6-hydroxydopamine, the distribution of PH3(+) neurons changed in the caudate putamen. Moreover, our histological analysis suggested that, in addition to the well-known MSK1 (mitogen and stress-activated kinase)/H3 phosphorylation/c-fos pathway, other signaling pathways were also activated. Together, our findings suggest that a number of genes involved in the pathology of epileptogenesis are upregulated in PH3(+) brain regions, and that H3 phosphorylation is a suitable indicator of strong neuronal excitation.


Assuntos
Encéfalo/metabolismo , Histonas/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Histonas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oxidopamina/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...